Reaction of $(CF_3)_2$ Hg with Group 4A Tetrahalides. Preparation and Stabilities of (Trifluoromethyl)germanium and (Trifluoromethyl)tin Compounds

R. J. Lagow,^{*1,2} R. Eujen, L. L. Gerchman, and J. A. Morrison

Contribution from the Department of Chemistry, University of Texas at Austin, Austin, Texas 78712. Received July 26, 1977

Abstract: Bis(trifluoromethyl)mercury, $(CF_3)_2Hg$, is found to react with GeBr₄, GeI₄, and SnBr₄ to produce all of the trifluoromethyl halides, $(CF_3)_nMX_{4-h}$, n = 1-4 when M is germanium and n = 1, 2 when M is tin. The perfluoroalkylgermanium halides are shown to be reactive, and a number of derivatives have been synthesized by reactions in which the trifluoromethyl-germanium bond is retained while the halogen ligand is replaced by other substituents. The tris(trifluoromethyl)germanium compounds, Ge₂(CF₃)₆, Ge(CF₃)₃-O-Ge(CF₃)₃, (CF₃)₃GeX where X = H, I, Br, Cl, F, and CH₃, the disubstituted species $(CF_3)_2GeH_2$ and $(CF_3)_2Ge(CH_3)_2$, and monosubstituted pentafluoroethyl derivatives $C_2F_5GeX_3$ where X = 1, Br, and CH₃ have all been newly synthesized and their properties determined. The tin-containing compounds CF_3SnBr_3 and $(CF_3)_2SnBr_2$ have also been prepared and characterized. Thermal stability studies indicate that the (trifluoromethyl)germanium iodides undergo redistribution reactions at 155°C and that the germanium-containing compounds, such as $(CF_3)_4Ge$, are more stable than their tin-containing counterparts, e.g., $(CF_3)_4Sn$.

Introduction

The reactions, properties, and stabilities of perfluoroalkylcontaining organometallic compounds have provided a rich and diverse chemistry, particularly for the group 5A elements such as phosphorus. Preparative reactions which yield compounds that contain trifluoromethyl groups and any of a wide variety of other substituents bonded to group 5A atoms are known for both the trivalent and pentavalent states.³ The properties of, for example, trifluoromethyl-substituted phosphoranes have been of interest for many reasons including their stereochemistry and the fluctional behavior exhibited by many of these pentacoordinate species. The chemistry of perfluoroalkyl derivatives of the more electropositive group 4A elements may well prove to be equally interesting, but very little is known about these species because reactions suitable for the preparation of a number of representative (perfluoroalkyl)group 4A derivatives have not been developed.

Previous syntheses of trifluoromethyl-substituted group 4A compounds have utilized the interaction of CF₃I with the divalent silicon or germanium species SiF₂ or GeI₂ to give CF₃SiF₂I⁴ or CF₃GeI₃.⁵ Trifluoromethyl iodide also reacts with hexamethyldistannane, (CH₃)₃SnSn(CH₃)₃, to cleave the metal-metal bond and produce trimethyl(trifluoromethyl)tin, $CF_3Sn(CH_3)_3$.⁶ These reactions are quite specific. The reaction of the divalent tin species SnI₂ with CF₃I, for example, does not provide CF₃SnI₃;⁵ and CF₃I cleaves the metal-metal bond in neither (CH₃)₃SiSi(CH₃)₃ nor $(CH_3)_3GeGe(CH_3)_3$.⁵ Moreover, while the reaction of GeI_2 with CF_3I does produce minor amounts of the disubstituted compound, $(CF_3)_2GeI_2$,^{5,7} none of these reactions yields the more fully substituted group 4A halides such as (CF₃)₃GeI or (CF₃)SnBr₂. Recently the reactions of metal halides like GeBr₄ with the intermediates produced in the radio-frequency discharge of C_2F_6 have been shown to result in $(CF_3)_4Ge$ and (CF₃)₄Sn,⁸ the first group 4A compounds to be prepared in which the metallic atoms were highly substituted with trifluoromethyl groups. While this discharge reaction has been very successful for the preparation of completely substituted species, the yields of partially substituted compounds, like $(CF_3)_2SnI_2$, are quite low. Additionally, this plasma reaction requires equipment not readily accessible to many laboratories. Therefore, an alternative type of reaction which required only readily available materials was investigated.

Ligand exchange reactions which involve the interchange

of electronegative substituents between compounds of the group 4A elements are well known and have frequently been used as synthetic tools, as have the reactions between compounds of these elements with silver or mercury salts.⁹ The trifluoromethyl group is an especially interesting ligand in that it is a substituted alkyl group which often appears to react as if it were a pseudohalogen. $^{3-8,10}$ Indeed, the electronegativity of the CF_3 group has been calculated to be between 3.2 and 3.55, or substantially higher than the electronegativity of chlorine.^{3b,10,11} However, ligand exchange reactions which result in the transfer of a CF₃ group from one metallic element to another appear to have been little investigated as a synthetic procedure, perhaps because of an early report which indicated that bis(trifluoromethyl)mercury is very reluctant to exchange ligands with inorganic halides.¹² The only preparation of a highly substituted, (trifluoromethyl)organometallic species by a reaction of this type that we are aware of is a recent report of a reaction between dimethylcadmium and bis(trifluoromethyl)mercury. In that study no compounds were isolated, but new resonances in the fluorine NMR were ascribed to the formation of CF₃CdCH₃ and (CF₃)₂Cd.¹³

In the present study the potential usefulness of ligand exchange reactions between the mercurial $(CF_3)_2$ Hg and halides of the group 4A elements was investigated by sealed tube reactions to determine if (trifluoromethyl)group 4A halides could be prepared in synthetically useful amounts. The reactions of the higher homologue, $(C_2F_5)_2$ Hg, with the germanium halides were followed to observe the effect of a change in the perfluoroalkyl group. The chemical stability of the germaniumtrifluoromethyl linkage was assessed by reaction of the (trifluoromethyl)germanium halides with a number of reagents to find whether a series of trifluoromethyl containing germanium compounds could be prepared or if these species decomposed upon substitution of the halogen atom attached to the germanium. Finally, the thermal stability of a number of the (trifluoromethyl)group 4A compounds was studied by heating small samples to temperatures between 100 and 200 °C.

Experimental Section

General. All volatile materials were manipulated in a standard vacuum line; nonvolatile solids were handled in an inert atmosphere bag. Reagents were obtained from commercial sources (Alfa Inorganics, PCR Inc.). The solid group 4A tetrahalides were purified by sublimation; other reagents were used as received. Purification of the

Table I. NMR Parameters and Infrared Absorpt	otions of ((Trifluoromethyl)	germanes
--	-------------	-------------------	----------

New compds	¹⁹ F NMR, δ ppm ^b	¹ Η NMR, δ ppm	$J_{\rm FF}, J_{\rm HF}, { m Hz}$	IR, cm ⁻¹
(CF ₃) ₃ GeH	-26.4	5.23	${}^{3}J_{\rm HF} = 6.7$	2155 (s), 1167 (vvs), 734 (s)
(CF ₃) ₂ GeH ₂ ^c	-26.2	4.55	${}^{3}J_{\rm HF} = 7.8$	2155 (s), 1168 (vs), 1137 (vvs), 722 (s)
(CF ₃) ₃ GeF	-22.1^{d}		${}^{3}J_{\rm FF} = 3.7^{e}$	1263 (s), 1176 (vs), 725 (s)
(CF ₃) ₃ GeCl	-22.6			1193 (s), 1168 (vs), 736 (s)
(CF ₃) ₃ GeBr	-23.1			1256 (s), 1164 (vs), 737 (s)
(CF ₃) ₃ Gel	-23.9			1258 (s), 1165 (vs), 735 (s)
(CF ₃) ₃ GeCH ₃	-23.0	0.61	${}^{1}J_{\rm CF} = 135$	2960 (w), 1172 (vvs), 727 (s)
$(CF_3)_2Ge(CH_3)_2$	-19.4	0.35	${}^{1}J_{\rm CF} = 131.4$	2930 (m), 1170 (vvs), 721 (m)
(CF ₃) ₃ GeGe(CF ₃) ₃	-22.1^{f}		·.	1170 (vs), 1135 (s), 737 (s)
(CF ₃) ₃ GeOGe(CF ₃) ₃	-21.8			1175 (vs), 1155 (vs), 735 (vs)

^{*a*} C₂F₅Ge(CH₃)₃: The ¹⁹F NMR consists of unresolved resonances at 5.4 (CF₃) and 50.7 ppm (CF₂); the ¹H NMR spectrum is a singlet at 0.15 ppm. Infrared absorptions: 2985 (m), 1330 (s), 1202 (vs), 1116 (s), 1075 (s), 960 (s), and 837 cm⁻¹ (s). ^{*b*} Neat compounds vs. external CF₃COOH; negative sign is deshielded. Also see ref 7. ^{*c*} For comparison, δ (GeH₃) 4.13 ppm; ³J_{HF} = 8.6 Hz for the related compound CF₃GeH₃.¹⁸ d δ (GeF) 142.6 ppm. ^{*e*} See Discussion. ^{*f*} Solution in (C₂H₅)₂O.

products was achieved by trap-to-trap fractionation followed, if necessary, by gas chromatography using a Bendix 2300 temperature programmed gas chromatograph equipped with a 3/8 in. × 24 ft. column 10% SE-30 on Chromosorb P. Gas-phase infrared spectra were obtained from a Beckman IR-20A spectrophotometer with 10-cm cells which had KBr windows. Nuclear magnetic resonance spectra are from a Perkin-Elmer R-20-B spectrometer operating at 60.0 MHz for protons (¹H NMR) and 56.46 MHz for fluorine (¹⁹F NMR). Coupling constants and chemical shifts were measured by a Takeda-Riken 3824X frequency counter. Chemical shifts for fluorine and hydrogen are referenced to external trifluoroacetic acid (TFA) and tetramethylsilane (Me₄Si), respectively. Positive fluorine chemical shifts indicate a resonance which is shielded relative to the reference. Positive proton chemical shifts are deshielded relative to Me₄Si in accordance with the historical convention. Mass spectra at 70 eV were recorded using an Hitachi RMU-6E spectrometer which was operated at room temperature. All reported ions were contained in an envelope of the appropriate intensities and distributions corresponding to the normal isotopic composition for that ion. Satisfactory elemental analyses were obtained for the germanium-containing products prepared from the (trifluoromethyl)germanium halides by Schwartzkopf Laboratories, Woodside, N.Y.

Preparation of the Perfluoroalkyl Mercurials. Bis(trifluoromethyl)mercury, $(CF_3)_2$ Hg, was originally prepared by the reaction of C_2F_6 with HgI₂ in a discharge as previously reported;⁸ the yield was 8 g/day. An alternative procedure, originally developed by Knunyants,¹⁴ utilized the reaction of HgO which was added to the stoichiometric amount of aqueous CF₃COOH, 50% by volume in H₂O, to yield (CF₃COOO)₂Hg. After the solvent was removed under vacuum, the mercurial (50 g, 0.11 mol) was mixed with potassium carbonate (30 g, 0.22 mol) and placed in a 500-mL flask which was equipped with a side arm 30 mm in diameter. With the pressure maintained at 20 mmHg by an external fore pump, the mercuric trifluoroacetate smoothly decarboxylated at temperatures of 140–200 °C to afford (CF₃)₂Hg which sublimed from the vessel; the yield was 28 g (74%). Bis(trifluoromethyl)mercury was identified by its NMR and mass spectra.

Bis(pentafluoroethyl)mercury was prepared by an adaptation of the decarboxylation reaction described above. Stoichiometric amounts of mercuric oxide were added to a solution of perfluoropropionic acid, 50% by volume in H₂O. The solvent was evaporated under vacuum to yield a white powder, presumably (CF₃CF₂COO)₂Hg, which was dried under vacuum at 100 °C. The thermal decarboxylation of this salt, even in the presence of a twofold molar excess of K₂CO₃, requires temperatures of 200–220 °C. At these temperatures the formation of the acid anhydride, (C₂F₅CO)₂O, mercury metal, and oxygen predominates and the yield of (C₂F₅)₂Hg does not exceed 10%. The ¹⁹F NMR spectrum of (C₂F₅)₂Hg in diethyl ether consists of a triplet at 6.5 ppm, ³J_{Hg-F} = 76 Hz, and a quartet at 32.5 ppm, ²J_{Hg-F} = 751 Hz; the fluorine-fluorine coupling constant is 1.4 Hz. The mass spectrum contains peaks at *m/e* 440, HgC₄F₁₀⁺, and 371, HgC₃F₇⁺ The base peak of the spectra occurs at *m/e* 321, HgC₂F₅⁺.

Preparation of the (Perfluoroalkyl)group 4A Halides. Reaction Conditions. Measured amounts of approximately 1-3 g of the indicated reagents were placed in 10-mm Pyrex tubes and degassed under

 Table II. Characterization of the (Trifluoromethyl)germanium

 Species

Compd	Mp, °C	Bp, °C	Mass spectra ^e
(CF ₃) ₃ GeH ^a	-102	31.6°	$(CF_3)_2GeCF_2H^+,$ $(CF_3)_2GeH^+$
$(CF_3)_2GeH_2$			$CF_3GeCF_2H_2^+,$ $CF_3GeFH_2^+$
$(CF_3)_4Ge^a$	-19.7	31.7°	$(CF_3)_3GeCF_2^+,$ $(CF_3)_3Ge^+$
(CF ₃) ₃ GeF ^a	27-30 ^b	19.1 <i>°</i>	$(CF_3)_3Ge^+,$ $(CF_3)_2GeF^+$
$(CF_3)_3GeCl^a$	- 98	37	$(CF_3)_2GeClCF_2^+,$ $(CF_3)_3Ge^+$
CF ₃) ₃ GeBr ^a	-63	49	$(CF_3)_3GeBr^+,$ $(CF_3)_2GeBrCF_2^+$
(CF ₃) ₃ Gel ^a	-39.8	72	$(CF_3)_3Gel^+,$ $(CF_3)_2GelCF_2^+$
$(CF_3)_3GeCH_3^a$	-48.5	57.5	$(CF_3)_2GeCF_2CH_3^+,$ $(CF_3)_2GeCH_2^+$
$(CF_3)_2Ge(CH_3)_2^a$		78	$CF_3GeCF_2(CH_3)_2^+,$ $CF_2Ge(CH_2)_2^+$
$(CF_3)_3GeGe(CF_3)_3$	72-74	d	$(CF_3)_5Ge_2CF_2^+,$
$(CF_3)_3GeOGe-$ $(CF_3)_3^a$		98	$(CF_3)_5Ge_2O^+,$ $(CF_3)_4Ge_2OF^+$

^{*a*} A satisfactory elemental analysis was obtained. ^{*b*} Sealed capillary; see Discussion. ^{*c*} Extrapolated. ^{*d*} The vapor pressure is 20 mm at 20 °C. ^{*e*} C₂F₅Ge(CH₃)₃: C₂F₅Ge(CH₃)₃+, Ge(CH₃)₃+.

dynamic vacuum. The vessels were then sealed with a torch, placed in an oven, and maintained at the temperatures reported below. After the reaction was terminated the products were separated by fractional condensation or GLC and identified by their properties. The mercury-containing products were the least volatile and were separated by vacuum sublimation. ¹⁹F NMR spectra of the ethereal solutions of these solids indicated the presence of the trifluoromethylmercuric halide, CF₃HgBr or CF₃HgI, as well as unreacted (CF₃)₂Hg.⁸ Mercuric iodide was identified among the reaction products by mass spectrometry.

Reaction of Germanium Tetrabromide with Perfluoroalkyl Mercurials. Germanium tetrabromide (1.98 g, 5.05 mmol) and (CF₃)₂Hg (1.69 g, 4.95 mmol) were reacted at 110 °C for 18 h. The tube was opened and the volatile contents removed at -22 °C for analysis by ¹⁹F NMR (see Table 1) which indicated the presence of CF₃GeBr₃, 55%; (CF₃)₂GeBr₂, 22%; (CF₃)₃GeBr, 18%; and (CF₃)₄Ge, 4%; accompanied by very small amounts of SiF₄ (δ 86.8 ppm) and c-C₃F₆ (δ 83.2 ppm). Separation by GLC yielded the pure compounds, which were further characterized by mass spectrometry (see Table 11). The infrared spectra of each compound contained strong absorptions at ca. 1165 cm⁻¹ (C-F stretch) and 735 cm⁻¹ (symmetric CF₃ defor-

Table III. Typical Product Distribution from the Reaction of Gel_4 + Hg(CF_3)_2 at 120 °C for 120 h

Initial	Yields ^a of products, %				
molar ratio ^c	CF ₃ Gel ₃	$(CF_3)_2$ - Gel ₂	(CF ₃) ₃ - Gel ₃	(CF ₃) ₄ Ge	$\frac{(CF_3)_{3}}{GeF^b}$
0.55	90	5			
0.98	13	53	16		
1.72			72	22	
2.00			72	15	11

^a Based on Gel₄. ^b See Discussion. ^c (CF₃)₂Hg/Gel₄.

mation) and were in accord with the spectra of the known (trifluoromethyl)germanium compounds.^{5,8,15}

A sample containing 5 mmol of GeBr₄ and 10 mmol of $(CF_3)_2$ Hg was held at 150 °C for 24 h. Upon separation the yield of $(CF_4)_4$ Ge was 20%, based on GeBr₄; $(CF_3)_c$ GeBr was 65%; and $(CF_3)_2$ GeBr₂ was 10%. If the less substituted germanium species were "recycled" several times by fractionating the products of the reaction at -112 or -119 °C and reacting the material retained in the trap [CF₃GeBr₃, $(CF_3)_2$ GeBR₂, and much of the $(CF_3)_3$ GeBr] with more $(CF_3)_3$ Hg, the yields of $(CF_3)_4$ Ge could be increased to 40%. In contrast the yield of the less substituted (trifluoromethyl)germanium tribromide was enhanced if dry ethyl ether, (5 mL) was used as solvent and a temperature of only 50 °C was maintained. Under these conditions equimolar amounts of GeBr₄ and $(CF_3)_2$ Hg were reacted for 7 days and yielded only the monosubstituted CF₃GeBr₃.

The reaction of 0.4 mmol of GeBr₄ with 1.5 mmol of the perfluoroethyl mercurial, $(C_2F_5)_2$ Hg, required much higher temperatures, 195 °C, before proceeding and gave only the monosubstituted C_2F_5 GeBr₃ in 45% yield. ¹⁹F NMR δ (CF₃) – 1.0 ppm; δ (CF₂) 38.8 ppm; ³J_{F-F} = 2.9 Hz. Perfluoroethyl bromide was also produced in this reaction in 20% yield.

Reaction of Germanium Tetraiodide with Perfluoroalkyl Mercurials. The reaction of GeI_4 with the perfluoroalkyl mercurials $(CF_3)_2Hg$ and $(C_2F_5)_2$ Hg was investigated in sealed tube reactions as described above. For the reactions of $(CF_3)_2$ Hg with GeI₄ the effect of varying the ratio of (CF₃)₂Hg to Gel₄ was investigated. Germanium tetraiodide (3 g) and sufficient $(CF_3)_2Hg$ to form molar ratios of mercurial to germane of 0.55, 0.98, 1.72, and 2.00 were placed in 10-mm tubes, degassed, sealed, and placed in an oven held at 120 °C. After 120 h the tubes were opened and the contents separated by fractionation. (Trifluoromethyl)germanium triiodide was found in a trap maintained at 0 °C, (CF₃)₂Gel₂ was held at -45 °C, (CF₃)₃GeI was retained at -96 °C, and (CF₃)₄Ge was in a trap cooled to -126 °C. Tris(trifluoromethyl)germanium fluoride stops in a -78 °C trap. The yields based on Gel4 of each of the (trifluoromethyl)germanium halides isolated from these reactions are presented in Table III as a function of the molar ratio of the reagents employed. The properties of the (trifluoromethyl)germanium iodides prepared are summarized in Tables I and II.

Reaction of GeI₄ (0.360 g, 0.61 mmol) with $(C_2F_5)_2Hg$ (0.245 g, 0.56 mmol) gave a 53% yield of a yellow liquid, $C_2F_5GeI_3$, as the only (perfluoroalkyl)germanium product even after 21 days at 135 °C. The ¹⁹F NMR of this compound in diethyl ether consists of a quartet at 41.3 ppm and a triplet at -0.9 ppm, ${}^3J_{F-F} = 2.2$ Hz. The mass spectrum of $C_2F_5GeI_3$ contains ions due to $C_2F_5GeI_3^+$, FGeI₃⁺, and GeI₃⁺. Perfluoroethyl iodide was also produced in 30% yield.

Reaction of Tin Tetrabromide with Bis(trifluoromethyl)mercury. Under a variety of conditions the reaction of $SnBr_4$ with $(CF_3)_2Hg$ resulted in the formation of CF_3SnBr_3 and $(CF_3)SnBr_2$ as the only volatile tin-containing products. For example, 2.9 g of $SnBr_4$ (6.62 mmol) and 6.74 g of $(CF_3)_2Hg$ (19.9 mmol) were held at 125 °C for 67 h. This reaction produced a 54% yield of CF_3SnBr_3 and a 19% yield of $(CF_3)_2SnBr_2$.

(Trifluoromethyl)tin tribromide passes through a trap maintained at -30 °C and is held in a trap which is at -45 °C. The ¹⁹F NMR spectrum is a singlet at -30.8 ppm symmetrically surrounded by satellites due to the tin 110 and 117 isotopes, ${}^{2}J_{Sn-F} = 871/835$ Hz. The infrared spectrum contains absorptions at 1212 (w), 1142 (s), 1130 (vs), 1091 (w), 1070 (sh), 1040 (w), and 730 cm⁻¹ (w). The mass spectrum contains ions due to SnBr₃⁺, CF₃SnBr₂⁺, CF₃SnBr⁺, and CF₃Sn⁺, the first two being the most intense.

Bis(trifluoromethyl)tin dibromide passes through a trap held at

-45 °C and is held in a trap maintained at -78 °C. The ¹⁹F NMR is a singlet at -34.7 ppm, ${}^{2}J_{Sn-F} = 717/689$ Hz. The infrared spectrum is characterized by absorptions at 1180 (sh), 1140 (vs), 1114 (m), 1095 (sh), 1040 (vw), and 730 cm⁻¹ (w). The mass spectrum contains ions due to CF₃SnBr₂+, (CF₃)₂SnBr⁺, SnBr₂+, and SnBr⁺; the base peak is CF₃SnBr₂⁺. Attempts to produce more fully substituted (trifluoromethyl)tin compounds by further reacting (CF₃)₂SnBr₂ with more (CF₃)₂Hg failed. At 80 °C there was no reaction; at 100 °C the (CF₃)₂SnBr₂ decomposed.

Reaction of Silicon Tetrahalides with Bis(trifluoromethyl)mercury. Silicon tetrachloride, -bromide, or -iodide (ca. 5 mmol) was reacted with (CF₃)₂Hg (1-20 mmol) in a similar fashion at temperatures which varied from 0 to 100 ° C. Although C₃F₆, SiF₄, and , e.g., Hgl₂ were produced and identified by mass spectrometry, in no case were trifluoromethyl-substituted silanes discerned.

Chemical Integrity of the Trifluoromethyl Bond to Germanium. The reactions of the (trifluoromethyl)germanium iodides, particularly $(CF_3)_3$ Gel, with a variety of chemicals that are known to replace germanium-halogen bonds with bonds from germanium to other ligands were examined to delineate the stability of the Ge-CF₃ linkage toward these reagents.

Reaction with Silver Halides. A large excess of AgBr (1.5 g) was reacted with 0.480 g of $(CF_3)_3$ GeI (1.18 mmol). After 24 h at room temperature, the sealed tube was opened and $(CF_3)_3$ GeBr was recovered in 95% yield based on $(CF_3)_3$ GeI. Similar reactions of $(CF_3)_3$ GeI with excess AgCl and AgF yielded $(CF_3)_3$ GeCl and $(CF_3)_3$ GeF in 92 and 73% yield, respectively. The properties of these compounds are presented in Tables I and II.

Reaction with Mercuric Oxide. In a sealed tube tris(trifluoromethyl)germanium iodide (0.210 g) was reacted for 24 h with excess HgO (0.700 g) to yield the digermoxane, $(CF_3)_3$ GeOGe $(CF_3)_3$, quantitatively. See Tables I and II for the properties of this compound.

Reaction with Sodium Amalgam. Tris(trifluoromethyl)germanium iodide (0.520 g, 0.13 mmol) was condensed onto 10 mL of 0.5% Na/Hg solution. The tube was sealed and shaken for 72 h at room temperature. This reaction after separation of the products yielded the digermane, $(CF_3)_3GeGe(CF_3)_3$, in 60% yield.

Reactions with Dimethylcadmium. A twofold excess of $(CH_3)_2Cd$, which had been prepared by the interaction of CdI_2 with CH_3MgI in ether and purified by fractionation at -22 °C, was condensed on 1 mmol of $(CF_3)_3$)GeI and allowed to react for 24 h at room temperature. After the tube was opened, $(CF_3)_3$ GeCH₃ was separated by GLC in 90% yield. By the analogous reaction $(CF_3)_2Ge(CH_3)_2$ was prepared from $(CF_3)_2GeI_2$ in 92% yield. Similarly, the reaction of 0.120 g of $C_2F_5GeI_3$ with 0.100 g of $(CH_3)_2Cd$ yielded $C_2F_5Ge(CH_3)_3$ quantitatively. Product characterization data are collected in Tables I and II.

Reaction with Aqueous Solutions. The reaction of 0.2-g samples of tris(trifluoromethyl)germanium iodide with excess 3 M hydroxide resulted in cleavage of the CF₃-Ge bond and the quantitative formation of fluoroform, identified by ¹⁹F NMR and mass spectrum. The reaction of (CF₃)₃Gel with acidic (3 M HCl) solutions, however resulted in the formation of (CF₃)₃geOGe(CF₃)₃ in good yield. See Tables I and II.

Reaction with Aqueous NaBH. Tris(trifluoromethyl)germanium iodide (0.375 g, 0.92 mmol) was condensed onto 50 mL of 1 M HBr which was contained in a 100-mL three-necked flask. After the solution was allowed to warm to 0 °C, the vacuum system was back-pressured to 1 atm with N₂. The solution was then stirred while 50 mL of H₂O containing 3 g of NaBH₄ was added over a 30-min period from a dropping funnel. The gases evolved from the reaction were passed through four traps maintained at -196 °C. After the reaction was completed the nitrogen was removed from the vacuum line and the contents of the traps were separated by fractional condensation to give 0.240 g (93%) of (CF₃)₃GeH. By an entirely analogous reaction, (CF₃)₂GeH₂ was prepared in 85% yield from 0.105 g of (CF₃)₂Gel₂. Properties of these hydrides are given in Tables 1 and II.

Characterization of the (Trifluoromethyl)germanium Compounds. All of the new compounds gave satisfactory elemental analyses. The melting points, boiling points, and two ions of high m/e value from the mass spectra are presented in Table II. The ¹⁹F and ¹H NMR data and strong infrared bands are contained in Table I. Each infrared spectrum was dominated by strong C-F stretches at ca. 1170 cm⁻¹ and CF₃ deformations at ca. 735 cm⁻¹. The positions of these bands were little affected by changes in the other substituents attached to

Table IV. Redistribution Reaction of $(CF_3)_3$ Gel at 155 °C, Sealed Tubes, Monitored by ¹⁹F NMR

	Rel amounts of			
Time, h	(CF ₃) ₄ Ge	(CF ₃) ₃ Gel	$(CF_3)_2Gel_2$	
0	0.00	1.00	0.00	
15	0.06	0.86	0.08	
30	0.11	0.77	0.12	
90	0.19	0.71	0.19	

germanium. The complete vibrational analysis of these compounds is currently in progress.

Thermal Stability of (Trifluoromethyl)stannanes and -germanes. To obtain a qualitative measure of the inherent thermal stability of some of the (trifluoromethyl)group 4A compounds which have been synthesized, small aliquots, ca. 0.25 g, of these species were introduced into 4-mm Pyrex tubes under vacuum, held at -196 °C, and sealed off with a torch. The samples were then placed in an oven which was maintained at the indicated temperatures and the contents of the tubes were monitored periodically by 19 F NMR.

(Trifluoromethyl)stannanes. A 0.3-g sample of tetrakis(trifluoromethyl)stannane, $(CF_3)_4Sn$, which had been synthesized by the plasma reaction of C_2F_6 with SnI_4 ,⁸ was heated to 100 °C for 24 h. At the end of this time the sample had completely decomposed to yield 1 equiv of $c-C_3F_6$ (identified by NMR and mass spectrum), small amounts of SiF₄, and a nonvolatile residue. Fifty-eight percent of a 0.20-g sample of $(CF_3)_4Sn$ which had been held for 24 h at 66 °C similarly decomposed, also liberating C_3F_6 , small amounts of SiF₄, and nonvolatile products which were presumably polymeric tin fluorides. In contrast, CF_3SnBr_3 (0.10 g) was only very slightly affected by 24 h at 125 °C as traces of $(CF_3)_2SnBr_2$ were observed.

(Trifluoromethyl)germanes. The germanium-containing compounds $(CF_3)_4Ge, (CF_3)_3GeI, (CF_3)_3GeCI, (CF_3)_2GeI_2, (CF_3)_3GeCH_3, and <math>(CF_3)_2Ge(CH_3)_2$ were also heated separately in 4-mm tubes which were then monitored by ¹⁹F NMR. All of these compounds were unchanged after 7 days at 145 °C. Even after 7 days at 190 °C the methylated derivatives, $(CF_3)_3GeCH_3$ and $(CF_3)_2Ge(CH_3)_2$, were unaffected. All of the remaining samples showed slow decomposition at 190 °C to yield perfluorocyclopropane and the expected germanium fluoride, e.g., $(CF_3)_3GeF$ from $(CF_3)_4Ge$. At 155 °C the (trifluoromethyl)germanium halides were found to be stable toward the formation of C_3F_6 , but redistribution (ligand scrambling) reactions slowly occur as shown in Table IV for $(CF_3)_3GeI$.

Results and Discussion

The reaction of the perfluoroalkyl mercurial $(CF_3)_2$ Hg with inorganic halides has been characterized as not leading to the formation of trifluoromethyl-substituted organometallic species. For example, the statement, "The reaction of bisperfluoroalkylmercury derivatives with metal or metalloid halides does not yield the perfluoroalkyl derivatives expected by analogy with the corresponding alkylmercury compounds", appears in one review¹⁰ on this subject. We find, however, that the reaction of $(CF_3)_2$ Hg with group 4A halides provides a very convenient source of many trifluoromethyl-containing group 4A compounds and that the synthesis appears to be limited only by the thermal stability of the compounds formed. As shown in Table III, all of the (trifluoromethyl)germanium halides, $(CF_3)_n GeI_{4-n}$ where n = 1-4, are produced in good to excellent yields, yields that can be varied to increase the amount of a desired product by the appropriate selection of the amounts of reagents used. These (trifluoromethyl)germanium halides have also been shown to be stable to temperatures of 145 °C for extended periods of time. The reaction of $(CF_3)_2$ Hg with SnBr₄ yields only CF₃SnBr₃ and (CF₃)₃SnBr₂. Again this is in accord with the thermal stabilities of the (trifluoromethyl)stannanes as a sample of $(CF_3)_4$ Sn, synthesized by an alternate route, was shown to decompose at temperatures as low as 66 °C whereas CF₃SnBr₃ was shown to be stable at 125 °C. The reaction of the silicon tetrahalides did not result in the formation of detectable amounts of (trifluoromethyl)silanes under

the conditions employed. The half-life, in the gas phase, of the compound CF_3SiF_3 is reported to be only 7 min at 100 °C.⁴

The reaction of the perfluroroethylmercurial, $(C_2F_5)_2Hg$, with GeBr₄ or GeI₄ resulted in the formation of the monosubstituted $C_2F_5GeX_3$ (X = Br, I) only, and then only at higher temperatures or longer reaction times. Attempts to further substitute C_2F_5 groups resulted in decomposition. These results imply that the activation energy for the exchange of perfluoroethyl ligands between germanium and mercury atoms is substantially higher than the activation energy for the exchange of perfluoromethyl groups.

Once formed, the (trifluoromethyl)germanium linkage is remarkably stable to a number of chemical reagents including sodium amalgam, sodium borohydride, dimethylcadmium, and a variety of metallic salts all of which cause reaction with the germanium-halogen bonds present in the same molecule, but leave the CF₃-Ge bond unaffected. Each of these reactions, summarized in Scheme I, resulted in the preparation of new compounds in excellent yield.

Scheme I. Reactions of (CF₃)₃GeI

(CF₃)₃GeOGe(CF₃)₃

The formation of perfluorocyclopropane, $(CF_2)_3$, in the reactions of the silicon, germanium, and tin halides with $(CF_3)_2Hg$ and in those thermal stability studies where decomposition was noted indicates that the probable mode of decomposition for the (trifluoromethyl)group 4A halides is difluorocarbene elimination with the formation of a metal-fluorine bond. The lack of C_3F_6 and the presence of, e.g., C_2F_5I among the products when $(C_2F_5)_2Hg$ was reacted with the germanium halides indicates that the (pentafluoroethyl)germanium halides decompose by reduction elimination of the pentafluoroethyl halide with the formation of a divalent germanium species. This is the reverse of the oxidative-addition reaction used for the original preparation of (trifluoromethyl)germanium triiodide;⁵ these reactions are shown in the equations:

$$CF_3I + GeI_2 \rightarrow CF_3GeI_3$$
 (1a)

$$C_2F_5GeI_3 \rightarrow C_2F_5I + GeI_2 \tag{1b}$$

A similar reductive-elimination process was observed in the mass spectrum of $(CF_3)_4Ge^8$ where the reaction $(CF_3)_3$ -GeCF₂⁺ \rightarrow C₂F₅⁺ + $(CF_3)_2$ Ge: was observed and supported by a metastable ion, indicating that reductive elimination is also a decomposition channel for the trifluoromethyl-substituted germanium species but the activation energy for this step is higher than that for the reaction channel leading to difluorocarbene elimination.

The mechanism for the formation of $(CF_3)_3$ GeF in the reaction of $(CF_3)_2$ Hg and GeI₄ at 120 °C is not clear. As shown in the Experimental Section and in Table IV the (trifluoromethyl)germanes are thermally stable at these temperatures, as is the mercurial, $(CF_3)_2$ Hg.¹⁶ Presumably, formation of the fluoride is catalyzed by the Lewis acids present in the reaction mixture. The fluoride is also anomalous in that all of the other newly prepared compounds appear to be monomeric liquids or solids except $(CF_3)_3$ GeF. As shown in Table II, the sublimation point of this compound is normal in comparison with the other halides, but the melting point, 30 °C, is quite abnormal, about 125 °C above the melting point of (CF₃)₃GeCl. This shows extensive association in the solid state, probably by means of fluorine bridging between germanium atoms. Further evidence of association comes from the ¹⁹F NMR: the fluorine resonances of the neat liquid consist of two broad singlets. In a diethyl ether solution these resonances become resolved into the expected doublet and decet again indicating association in the condensed phase that is broken up (on the NMR time scale) by the intervention of solvent molecules. Similar effects have been reported for the compounds $CH_3GeH_2F^{17}$ and $(CF_3)_2GeF_2$.⁷ Thus, the properties of these fluorides indicates that the germanium fluorides occupy a

middle ground between those of carbon and silicon, which are

very volatile, nonassociated fluorides, and those of tin and lead,

which are essentially nonvolatile at lower temperatures and

are strongly associated in the solid phase. One of the observations that led to the present study was made during the reaction of the germanium tetrahalides, GeBr₄ and especially GeI₄, with C_2F_6 in the discharge apparatus.⁸ The material obtained from this reaction was fractionated at -78 °C and small amounts of (CF₃)₂GeI₂ were observed by mass spectrometry to be in the fraction retained in the -78 °C trap. After the sample had been stored at room temperature for a few days, however, these samples were shown, again by mass spectrometry, to contain all of the possible (trifluoromethyl)germanes, including (CF₃)₄Ge. Clearly, these products were being formed from the less volatile (trifluoromethyl)germanium halides by some exchange process, presumably involving trifluoromethyl groups migrating from one germanium atom to another. But ligand exchange reactions of pseudohalogen CF₃ groups attached to germanium had been reported not to proceed⁵ even at temperatures of 190 °C. In order to resolve these two results small samples of tris(trifluoromethyl)germanium iodide were sealed into tubes and heated to 155 °C where, as shown in Table IV, the redistribution reaction was observed to occur:

$$2(CF_3)_3GeI \xrightarrow{155 \circ C} (CF_3)_4Ge + (CF_3)_2GeI_2 \qquad (2)$$

In conclusion, we find that in contrast to the earlier reports. the reaction of the perfluoroalkyl mercurials with group 4A halides does provide a very convenient source of many (trifluoromethyl)group 4A compounds, especially those of germanium. The iodides and bromides can be prepared directly, and can be converted easily to other (trifluoromethyl)germanium derivatives. The reaction of other inorganic halides, including selected transition metal halides, with perfluoromethyl mercurials will be reported at a later date.

Acknowledgment. The support of the National Science Foundation is gratefully acknowledged. R.E. was supported by the Deutsche Forschungsgemeinschaft.

References and Notes

- (1) Alfred P. Sloan Fellow.
- To whom correspondence should be addressed. (2)
- See, for example, (a) R. H. Neilson, R. C. Lee, and A. H. Cowley, *Inorg. Chem.*, 16, 1455 (1977); (b) A. H. Cowley, M. J. S. Dewar, and D. W. Goodman, *J. Am. Chem. Soc.*, 97, 3653 (1975); (c) K. I. The and R. G. Cavell, *Inorg. Chem.*, 16, 1463 (1977), and references cited therein.
 K. G. Sharp and T. D. Coyle, *Inorg. Chem.*, 11, 1259 (1972).
 H. C. Clark and C. J. Willis, *J. Am. Chem. Soc.*, 84, 898 (1962).
 H. C. Clark and C. J. Willis, *J. Am. Chem. Soc.*, 82, 1888 (1960); H. D.
- (5)
- (6) Kaesz, J. R. Phillips, and F. G. A. Stone, ibid., 82, 6228 (1960).
- R. Eujen and H. Burger, J. Organomet. Chem., 88, 165 (1975).
- (8) R. J. Lagow, L. L. Gerchman, R. A. Jacob, and J. A. Morrison, J. Am. Chem. Soc., 97, 518 (1975)
- (9) K. Moedritzer, Adv. Organomet. Chem. 6, 171 (1968); C. H. Van Dyke in 'Organometallic Compounds of the Group IV Elements", Vol. 2, Part 1, A. G. MacDiarmid, Ed., Marcel Dekker, New York, N.Y., 1972, p 149 ff. (10) J. J. Lagowski, *Q. Rev., Chem. Soc.*, **13**, 233 (1959).
- J. Lagowski, G. Hev., Orlem. 502, 13, 23 (1909).
 J. Huheey, J. Phys. Chem., 69, 3284 (1965).
 J. J. Lagowski, Ph.D. Thesis, Cambridge University, 1959; see A. J. Downs, J. Chem. Soc., 5273 (1963).
- (13) B. L. Dyatkin, B. I. Martynov, I. L. Knunyants, S. R. Sterlin, L. A. Fedorof, and Z. A. Stumbrevichute, *Tetrahedron Lett.*, 1345 (1971), Spectroscopic quantities of the well-known CF₃Sn(CH₃)₃ have been prepared by the reaction of C6H5HgCF3 with (CH3)3SnBr: D. Seyferth and S. P. Hopper, J. Org. Chem., 37, 4070 (1972).
- (14) I. L. Knunyants, Ya. F. Komissarov, B. L. Dyatkin, and L. T. Lantseva, Izv. Akad. Nauk SSSR, Ser. Khim., 4, 943 (1973).
- (15) H. Burger and R. Eujen, Spectrochim. Acta, Part A, 31 1645, 1655 (1975).
- (16) H. J. Emeleus and R. N. Haszeldine, J. Chem. Soc., 2953 (1949). (17) C. H. Van Dyke, J. E. Bulkowski, and N. Viswanathan, Inorg. Nucl. Chem. Lett., 7, 1057 (1971).
- (18) L. C. Krisher, W. A. Watson, and J. A. Morrison, J. Chem. Phys., 61, 3429 (1974).